MEDIAPIPE VA OPENCV ASOSIDA SUN’IY INTELLEKTGA ASOSLANGAN VIRTUAL TEST TIZIMINI ISHLAB CHIQISH
Keywords:
sun‟iy intellekt, MediaPipe, OpenCV, virtual test tizimi, qo„l harakatlarini aniqlash, ta‟lim texnologiyalari.Abstract
Ushbu maqola MediaPipe va OpenCV kutubxonalariga asoslangan
sun‟iy intellekt yordamida virtual test tizimini ishlab chiqish jarayonini yoritadi. Tizim qo„l
harakatlarini aniqlash va foydalanuvchi interfeysini boshqarish orqali test savollariga javob
berish imkonini beradi. Maqolada tizimning arxitekturasi, qo„llanilgan texnologiyalar va
amaliy natijalar tahlil qilinadi. Shuningdek, ushbu yondashuvning ta‟lim sohasidagi
ahamiyati va kelajakdagi rivojlanish istiqbollari muhokama qilinadi.
References
Lugaresi, C., et al. (2019). “MediaPipe: A Framework for Building Perception
Pipelines.” arXiv preprint arXiv:1906.08172.
Bradski, G. (2000). “The OpenCV Library.” Dr. Dobb’s Journal of Software Tools.
Wang, Y., et al. (2020). “Gesture-Based Interactive Learning Systems.” Journal of
Educational Technology.
Smith, J., & Johnson, K. (2021). “Challenges in Traditional Testing Systems.”
Educational Innovations.
Lee, H., et al. (2022). “Impact of Environmental Factors on Gesture Recognition.”
Computer Vision Conference.
Google (2023). “MediaPipe Hand Tracking Documentation.” Google Developer Portal.
Kurbanov Abdurahmon Alishboyevich. Methods of evaluating a person‟s emotional state
based on the analysis of textual data. Journal of actual problems of modern science,
education and training, pp 32-40. 2023.
Mediapipe
Documentation.
(n.d.).
Hand
Tracking
API.
Retrieved
from
OpenCV Documentation. (n.d.). Computer Vision Algorithms for Gesture Recognition.
Retrieved from https://opencv.org




