SUN'IY INTELLEKTDA EHTIMOLLAR NAZARIYASINING ROLI VA UNING MASHINALARNI O'QITISHDAGI AHAMIYATI
Keywords:
Sun‘iy intellekt, ehtimollar nazariyasi, mashina o‗qitish, statistik model, Bayes teoremasi, noaniqlik, klassifikatsiya, regressiyaAbstract
Ushbu maqolada sun‘iy intellekt (AI) tizimlarining rivojlanishida
ehtimollar nazariyasining o‗rni va uning mashina o‗qitish (machine learning) jarayonidagi
amaliy ahamiyati yoritiladi. Ehtimollik yondashuvlari yordamida mashinalar noaniqlik
sharoitida qaror qabul qilishni, ma‘lumotlar orasidagi yashirin bog‗liqliklarni aniqlashni
o‗rganadi. Maqolada ehtimollar nazariyasining asosiy tushunchalari, statistik modellar,
Bayes teoremasi va ehtimolli algoritmlarning mashina o‗qitishdagi qo‗llanilishi tahlil
qilinadi.
References
Bowen Qu, Bayes‘ Theorem in Machine Learning: A Literature Review, 2025.
David M. Blei, Alp Kucukelbir, Jon D. McAuliffe, Variational Inference: A Review for
Statisticians, 2016.
Roohallah Alizadehsani et al., Handling of uncertainty in medical data using machine learning
and probability theory techniques: A review of 30 years (1991-2020), 2020.
Marcus Hutter, Towards a Universal Theory of Artificial Intelligence Based on Algorithmic
Probability and Sequential Decisions, 2001.
Ray Solomonoff, Foundations of Probability Theory for AI - The Application of Algorithmic
Probability to Problems in Artificial Intelligence, 2013.
Ulrike von Luxburg, Bernhard Schoelkopf, Statistical Learning Theory: Models, Concepts, and
Results, 2008.
Michael I. Jordan, The Importance of Probabilistic Graphical Models in Machine Learning,




