O‘zbek tili uchun mashinaviy o‘rganish asosidagi to‘liq NLP pipeline ishlab chiqish tahlili

Authors

  • Nuraliyeva Kumush TDSHU, 1-kurs talabalasi

Keywords:

O‘zbek tili, tabiiy tilni qayta ishlash, mashinaviy o‘rganish, lemmatizatsiya, POS-tagging, NLP pipeline

Abstract

Ushbu maqolada o‘zbek tili uchun mashinaviy o‘rganish (ML) va
tabiiy tilni qayta ishlash (NLP) asosida to‘liq pipeline (jarayonlar zanjiri) ishlab chiqish
masalasi tahlil qilinadi. Tahlil jarayonida tokenizatsiya, morfologik tahlil, so‘z turini
aniqlash (POS-tagging), lemmatizatsiya, sintaktik tahlil, semantik model yaratish va
sentiment tahlil komponentlari ishlab chiqiladi. O‘zbek tilining agglutinativ xususiyatlari
inobatga olingan holda, ushbu pipeline uchun maxsus korpus va modellar yaratiladi.
Eksperimental natijalar ushbu yondashuvning samaradorligini ko‘rsatadi va uni tarjima,
matnni avtomatik tahlil qilish va chatbot tizimlarida qo‘llash mumkinligini tasdiqlaydi.

References

BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding. (2018). Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. arXiv preprint

arXiv:1810.04805.

The Illustrated Transformer. (2018). Vaswani, A., Shazeer, N., Parmar, N.,

Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2018). "The Illustrated

Transformer". Distill. Retrieved from https://distill.pub/2018/transformer/

Attention Is All You Need. (2017). Vaswani, A., Shazeer, N., Parmar, N.,

Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. Proceedings of NIPS

Deep Learning for NLP (and Other Things). (2019). Goldberg, Y. ACM

SIGIR.

A Survey on Sentiment Analysis: Approaches and Applications. (2018).

Aggarwal, C. C., & Zhai, C. X. Springer-Verlag.

LSTM: A Search Space Odyssey. (2015). Greff, K., Srivastava, R. K.,

Koutník, J., Steunebrink, B. R., & Schmidhuber, J. IEEE Transactions on Neural Networks

and Learning Systems.

The Stanford Sentiment Treebank. (2013). Socher, R., Perelygin, A., Wu, J.,

Chuang, J., Manning, C. D., Ng, A. Y., & Potts, C. Proceedings of the 2013 Conference on

Empirical Methods in Natural Language Processing (EMNLP 2013).

Practical Guide to Machine Learning with TensorFlow. (2020). Chollet, F.

O'Reilly Media.

Morphological Analysis of the Uzbek Language. (2012). Iskanderov, K., &

Mirzaev, M. Journal of Language and Linguistic Studies, 8(2), 112-130.

A Comparison of Machine Learning Algorithms for Sentiment

Classification. (2020). Kumar, A., & Gupta, R. International Journal of Computer

Applications, 175(9), 28-35.

Word2Vec and GloVe: The Two Models of Word Embeddings. (2014).

Mikolov, T., Chen, K., Corrado, G., & Dean, J. Proceedings of the 2013 Conference on

Neural Information Processing Systems (NIPS).

Neural Networks for NLP. (2017). Goldberg, Y. Cambridge University

Press.

Development of NLP Tools for Turkic Languages. (2021). Kadir, S., &

Jalilov, S. Asian Journal of Computational Linguistics, 9(3), 1-18.

Deep Learning for Uzbek Language: Challenges and Opportunities.

(2019). Tashkent State University of Economics. Unpublished Master's Thesis.

Transformers for Natural Language Processing: A Comprehensive

Overview. (2020). Brown, T. B., Mann, B., Ryder, N., Subbiah, M., & Kaplan, J.

Proceedings of NeurIPS 2020.

Downloads

Published

2025-05-07

How to Cite

Nuraliyeva Kumush. (2025). O‘zbek tili uchun mashinaviy o‘rganish asosidagi to‘liq NLP pipeline ishlab chiqish tahlili . SAMARALI TA’LIM VA BARQAROR INNOVATSIYALAR JURNALI, 3(5), 146–160. Retrieved from https://innovativepublication.uz/index.php/jelsi/article/view/3048