Oftalmologik tasvirlarni tahlil qiluvchi veyvletlarga asoslangan neyron tarmoq arxitekturasini tasvirlarni raqamli ishlash orqali takomillashtirish

Authors

  • Raximov Baxtiyor Saidovich, Oʻrazmatov Tohir Quronbayevich Toshkent tibbiyot akademiyasi Urganch filiali “Biofizika va axborot texnologiyalari” kafedrasi mudiri, Muhammad al-Xorazmiy nomidagi TATU Urganch filiali “Axborot texnologiyalari” kafedrasi katta oʻqituvchisi

Keywords:

Oftalmologiya, raqamli tasvir ishlash, neyron tarmoq, EfficientNetB0, konvolyutsion neyron tarmoq, Swish aktivatsiya funksiyasi, Squeeze-and-Excite mexanizmi.

Abstract

Maqolada oftalmologik tasvirlarni tahlil qilishda raqamli ishlash
texnologiyalari qo'llanilishi va EfficientNetB0 algoritmining afzalliklari tahlil qilinadi.
EfficientNetB0 algoritmi chuqurlik, kenglik va rezolyutsiya kabi parametrlarni samarali
balanslash orqali neyron tarmoqning ishlash unumdorligini oshiradi. Shuningdek, Squeeze
and-Excite (SE) bloki va Swish aktivatsiya funksiyasi kabi usullar yordamida tarmoq
resurslarini tejash va tasvirlardan xususiyatlarni aniq ajratish imkoniyati oshiriladi.

References

Tan, M., & Le, Q. (2019). EfficientNet: Rethinking Model Scaling for Convolutional

Neural Networks. In Proceedings of the 36th International Conference on Machine

Learning (pp. 6105-6114). ICML.

Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-Excitation Networks. IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 7132-7141.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with

Deep Convolutional Neural Networks. Advances in Neural Information Processing

Systems, 25, 1097-1105.

LeCun, Y, Bengio, Y, & Hinton, G. (2015). Deep Learning. Nature, 521(7553), 436-444.

He K, Zhang X, Ren S, & Sun, J.(2016). Deep Residual Learning for Image Recognition.

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770-778

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... &

Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile

Vision Applications. arXiv preprint arXiv:1704.04861.

Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International

Conference on Machine Learning (pp. 448-456). ICML.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L.

(2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of

Computer Vision, 115(3), 211-252.

Glorot, X., & Bengio, Y. (2010). Understanding the Difficulty of Training Deep

Feedforward Neural Networks. In Proceedings of the Thirteenth International Conference

on Artificial Intelligence and Statistics (AISTATS), 249-256.

Mishkin, D., & Matas, J. (2015). All You Need is a Good Init. arXiv preprint

arXiv:1511.06422.

Downloads

Published

2024-11-12

How to Cite

Raximov Baxtiyor Saidovich, Oʻrazmatov Tohir Quronbayevich. (2024). Oftalmologik tasvirlarni tahlil qiluvchi veyvletlarga asoslangan neyron tarmoq arxitekturasini tasvirlarni raqamli ishlash orqali takomillashtirish. SAMARALI TA’LIM VA BARQAROR INNOVATSIYALAR JURNALI, 2(11), 305–312. Retrieved from https://innovativepublication.uz/index.php/jelsi/article/view/1928