Oftalmologik tasvirlarni tahlil qiluvchi veyvletlarga asoslangan neyron tarmoq arxitekturasini tasvirlarni raqamli ishlash orqali takomillashtirish
Keywords:
Oftalmologiya, raqamli tasvir ishlash, neyron tarmoq, EfficientNetB0, konvolyutsion neyron tarmoq, Swish aktivatsiya funksiyasi, Squeeze-and-Excite mexanizmi.Abstract
Maqolada oftalmologik tasvirlarni tahlil qilishda raqamli ishlash
texnologiyalari qo'llanilishi va EfficientNetB0 algoritmining afzalliklari tahlil qilinadi.
EfficientNetB0 algoritmi chuqurlik, kenglik va rezolyutsiya kabi parametrlarni samarali
balanslash orqali neyron tarmoqning ishlash unumdorligini oshiradi. Shuningdek, Squeeze
and-Excite (SE) bloki va Swish aktivatsiya funksiyasi kabi usullar yordamida tarmoq
resurslarini tejash va tasvirlardan xususiyatlarni aniq ajratish imkoniyati oshiriladi.
References
Tan, M., & Le, Q. (2019). EfficientNet: Rethinking Model Scaling for Convolutional
Neural Networks. In Proceedings of the 36th International Conference on Machine
Learning (pp. 6105-6114). ICML.
Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-Excitation Networks. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 7132-7141.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with
Deep Convolutional Neural Networks. Advances in Neural Information Processing
Systems, 25, 1097-1105.
LeCun, Y, Bengio, Y, & Hinton, G. (2015). Deep Learning. Nature, 521(7553), 436-444.
He K, Zhang X, Ren S, & Sun, J.(2016). Deep Residual Learning for Image Recognition.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770-778
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... &
Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications. arXiv preprint arXiv:1704.04861.
Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International
Conference on Machine Learning (pp. 448-456). ICML.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L.
(2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of
Computer Vision, 115(3), 211-252.
Glorot, X., & Bengio, Y. (2010). Understanding the Difficulty of Training Deep
Feedforward Neural Networks. In Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics (AISTATS), 249-256.
Mishkin, D., & Matas, J. (2015). All You Need is a Good Init. arXiv preprint
arXiv:1511.06422.




