Neyron tarmoqlarda Perseptron qonuni asoslari va ta’sirini o‘rganish
Keywords:
perseptron modeli, ikkilik klassifikatsiyalash, ko‘krak bezi saratoni viskonsin dataseti, modelning aniqligi, chalkashlik matritsasi, chegara funktsiyasi, tibbiy diagnostika.Abstract
Ushbu maqola Perceptron qoidasining asosiy tushunchasini, uning
matematik asoslarini va zamonaviy sun’iy neyron tarmoqlarini rivojlantirishdagi muhim
rolini o‘rganadi. Oddiy, ammo kuchli o‘rganish algoritmi Perceptron Rule, mashinani
o‘rganish va sun’iy intellektni rivojlantirishda hal qiluvchi omil bo‘ldi. Maqolada
Perceptron qonunining cheklovlari va ular ko‘p qatlamli perseptronlar va boshqa murakkab
neyron tarmoq arxitekturalarini ishlab chiqishda hamda, Python kutubxonalaridan
foydalanib berilgan datasetni Perceptron qonuni orqali qanday ko‘rib chiqilganligi
muhokama qilinadi.
References
Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6), 386–408.
https://doi.org/10.1037/h0042519
Minsky, M. L., & Papert, S. A. (1988). Perceptrons: An introduction to
computational geometry. MIT press.
Haykin, S. (1999). Neural networks: a comprehensive foundation. Prentice Hall.
Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
Nielsen, M. A. (2015). Neural networks and deep learning. Determination Press.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
Geron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, tools, and techniques to build intelligent systems. O‘Reilly.
Chollet, F. (2018). Deep learning with Python. Manning Publications.
Brownlee, J. (2020). How to Develop a Perceptron Algorithm From Scratch in
Python. Machine Learning Mastery. https://machinelearningmastery.com/develop-a
perceptron-algorithm-from-scratch-in-python/
Crevier, D. (1993). AI: The tumultuous history of the search for artificial intelligence.
Basic Books.




