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Abstract: This work studies the problem of construction of the optimal quadrature 

formula in the sense of Sard in the Hilbert space  
(1,0)

2 0,1W  of periodic, complex-valued 

functions for numerical calculation of Fourier integrals. Here a quadrature sum consists of a 

linear combination of the given function values on a uniform mesh. The optimal quadrature 

formula is obtained by minimizing the norm of the error functional with respect to 

coefficients. 
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1. Introduction and statement of the problem 

In this work using the Sobolev method [3] for the approximate calculation of the Fourier 

integrals  

1 2

0
[ , ] = ( )i xI e x dx     
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the optimal quadrature formula is constructed and the square of the norm of the error 

functional for the constructed optimal quadrature formula is calculated.  

Let  
(1,0)

2 0,1W  be a Hilbert space of periodic, complex-valued functions  ( ), 0,1x x   

which is defined as  

      
(1,0)

2 20,1 = : 0,1 C| i a .c .a 0,1 .W s bs ont nd L     

Furthermore, it should be noted that every element of the space 
(1,0)

2 (0,1]W  satisfies the 

following condition of 1-periodicity  

( ) = ( ) , .x x for x     R Z  

The inner product for the functions   and   in this space is defined as  

  
1

(1,0)
02

, = ( ) ( ) '( ) ( ) ,
W

x x x x dx         (1) 

 where   is the complex conjugate to the function  . 

2.  Exponentially weighted optimal quadrature formula 

We consider a quadrature formula of the following form  

1 2

0
=1

( ) ( ),
N

i x

k
k

e x dx C hk     (2) 

 where Z,  
(1,0)

2 , kW C  are the coefficients of the quadrature formula and 

1
N, =N h

N
 . 

 The error of the quadrature formula is given as follows  

1 2

0
=1

( ) = ( ) ( ),
N

i x

k
k

e x dx C hk     (3) 
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and  

2

=1 =

( ) = ( )
N

i x

k
k

x e C x hk 



 




     (4) 

 is the periodic error functional of the quadrature formula (2), here   is the Dirac delta-

function. 

The error (3) of the quadrature formula (2) is a linear functional in 
(1,0)*

2W . The absolute 

value of the error (3) is estimated by the Cauchy-Schwarz inequality as follows  

(1,0)* (1,0)

2 2( ) | | ,W W    

where  

(1,0)*

2

(1,0)
, | 0

2

( )
| = sup

W

W

 






 (5) 

 is the norm of the error functional (4). 

The problem of constructing an optimal quadrature formula for the approximate calculation 

of the integral is as follows. 

Problem 2.1. Find the coefficients kC  that give the minimum value to the norm 
(1,0)*

2|W , 

and calculate the following quantity  

(1,0)* (1,0)*

2 2| = | .inf
o

C
k

W W  

We note that the coefficients kC  which are the solution for Problem 1 are called the optimal 

coefficients and the quadrature formula (2) with these coefficients is said to be the optimal 

quadrature formula in the sense of Sard [2]. 
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3.  Main Results 

To calculate the norm (5), we use the extremal function    for the error functional  (see 

[3]) that satisfies the following equality:  

(1,0)* (1,0)

2 2( ) = | | .W W   (6) 

Since 
(1,0)

2W is the Hilbert space by the Riesz representation theorem in a Hilbert space for 

the error functional  and for any   from 
(1,0)

2W  there exists an element 
(1,0)

2W   that 

satisfies the equality  

 (1,0)
2

( ) = , ,
W

    (7) 

 where (1,0)
2

,
W

   is the inner product of the functions   and   defined by equality (1). 

In addition, the equality 
(1,0)* (1,0)

2 2| = |W W  is fulfilled. So, taking into account equality 

(6), we derive  

 
2

(1,0)*

2( ) = | .W  

Integrating by parts the right-hand side of (7), keeping in mind periodicity of functions, for 

  we have  

' ( ) ( ) = ( ).x x x     (8) 

Further, we give the main results of this work. 

Theorem 3.1  The solution of equation (8) is the extremal function   of the error 

functional  and it has the following expression   
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2 2 ( )

2 2 2 2
=1 =

( ) = ,
4 1 4 1

i x i x hkN

k

k

e e
x C

   




   

  




 

   

where kC  is the complex conjugate to the function kC . 

Theorem 3.2  If 
(1,0)

2 ,W  then the following formulas are valid for the optimal 

coefficients of the quadrature formula (2) with the error functional (4)   

2
2

2 2 2

2 1 2 cos(2 )
= , =1,2, , .

4 1 1

h ho
i hk

k h

e e h
C e for k N

e

 

 

 
 

 
 

Theorem 3.3  In the space 
(1,0)

2W  for the norm of the error functional (4) of the optimal 

quadrature formula, the following holds   

   

22
(1,0)*

2 22 2 22 2

1 2 1 2 cos(2 )
| = .

4 1 14 1

h h
o

h

e e h
W

h e



   

 
 

 
 (9) 

Remark 3.1  It should be noted that from (9) we obtain   

2 22
2 4 61 4 3

= ( ),
12 360

o

h h O h
  

   
 

 

i.e., the order of convergence of the optimal quadrature formula of the form (2) is ( )O h . 
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