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Annotasiya: Lebeg fazosida  -Riman-Liuvill tipidagi kasrli integralning 

chegaralanganligi va Hardi-Littlevud tengsizligi haqidagi teoremalari isbotlangan 

Kalit so’zlar: Hardi va Littlevud tengsizligi, Riman-Liuvill integrali,  

ψ-Riman-Liuvill kasr integrali, Gyolder tengsizligi, musbat o‘suvchi funksiya. 

 

1928-yilda Hardi va Littlevud Riman-Liuvill integralining chegaralanganligini 

isbotlashdi. Klassik Hardi tengsizligi qism integrali uchun quyidagicha: 
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 bunda 0 < α < 1,  
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 −   , 
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1

q p
+ =  va 0 < b ≤ ∞. 

Ushbu mavzuda ψ-Riman-Liuvill kasr integrallarining chegaralanganligini ko‘rib 

chiqamiz. 
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1-teorema.  Faraz qilaylik − bap ,1,0  va  ( )x   musbat o‘suvchi 

funksiya bo‘lsin.  U holda ( )baLp ,  fazoda  ,
+aI   operator   chegaralangan va  ushbu                      

;

( , )( , )

( ( ) ( ))
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 
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−
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 +
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tengsizlik o‘rinli bo‘ladi. 

 

Isbot. Ataylik p =   bo‘lsin, u holda ushbu 
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tengsizlikka asosan, barcha ( , ]x a b  uchun quyidagini olamiz:  
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 p = 1 bo‘lsin,  bundan esa quyidagiga ega bo‘lamiz 
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Endi 1 p    bo‘lgan holatni ko‘rib chiqamiz. 0q    va 
1 1

1
p q
+ =  bo‘lsin. 

Gyolder tengsizligiga asosan, quyidagiga ega bo‘lamiz 
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Shunday qilib,  ( )' x    o‘suvchi ekanligini hisobga olsak, quyidagini olamiz 
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Demak, oxirgi tengsizlikdan (1) kelib chiqadi. □ 

 

2-teorema.  Faraz qilaylik 0 1, a b  −      va  ( )x   musbat o‘suvchi 
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1

1 p


  va 1
1

p
q

p
 

−
, 

1 1 1
1

r q p
= + −  bo‘lsa, u holda  ,

+aI   operator  

( )baLp ,   fazoni ( ),qL a b   fazoga ko‘chiradi va  ushbu 

( ) ( )

( ) ( ) ( )( )
( )

( ) ( )

1 1
1

1 1 1

;

,,

'1

1 1
pq

r r p q

L bL b

b b a
u u

r



 

 

  

 

− +
− − −

+

 −    
  − −
 

 

tengsizlik o‘rinli bo‘ladi. 
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Isboti. Endi p = 1 va 
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Isbotni davom ettirib, 
1

1 p
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1
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−
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Quyidagi belgilashni kiritamiz      
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r q  e’tiborga olsak, Gyolder tengsizligini qo‘llaymiz 

               ; 11
( ) '( )( ( ) ( )) ( )

( )

x

a
a

I x t x t t dt     


 −

+ = − =
   

1 11
( )1 11

[ '( )( ( ) ( )) ] ( ) [ '( )( ( ) ( )) ] ( )
( )

r r
px pq q
q p q

a
t x t t t x t t dt        



−
−− −= − −

   

             
1 1

1
11

( [ '( )( ( ) ( )) ] ( ) ) ( ( ) )
( )

p qx xp pr q

a a
t x t t dt t dt    



−

− −
    

            
1 11 1 (1 )1 1

1 1 [ '( )] ( ( ) ( ))
( [ '( )( ( ) ( )) ] ) ( )

( ) 1 (1 )

r r
x

r p p

a

x x a
t x t dt

r


   

  
 

− − −− −
− −

 − =
 − −  

            
1 1

1
1( [ '( )( ( ) ( )) ] ( ) ) ( ( ) )

p qx xp pr q

a a
t x t t dt t dt    

−

− −   

Teorema shartiga asosan, oxirgi ifoda quyidagi shartlarda o‘rinli bo‘ladi: 

1
1 1 (1 ) 1r

r
  = −  −  −  . 

Bu shartga ko‘ra,  quyidagi tengsizlik o‘rinli bo‘ladi 

; ;

( , )
( )

q

qbq

L a b a
I x dx   

  + + =   

1

( , )

1
[ [ '( )( ( ) ( )) ] ( )

[ ( )]
p

b x p q pr

q L a ba a
t x t t dt    



−− −
    

  ( )
1

(1 )
1 1 (1 )

'( ) ( ) ( )
]

1 (1 )

q
r r px x a

dx
r


  



− −
− − − −

 
 − −
 

 

Vol.2 №2 (2024). February 



 
346 

                                                  Journal of Effective               innovativepublication.uz                    

          Learning and Sustainable Innovation 

 

 

 
1

(1 )
1 1 (1 )

( , ) 1
'( ) ( ( ) ( ))

'( )( ( ) ( )) ( )
1 (1 )( )

p

qq p r r p rb x pL a b

q a a

b b
t x t t dtdx

r




    

   


− −− − − −

−
 −

   −  − −  
 

 

    ( )
1

(1 )
1 1 1 (1 )1 (1 )

( , )

( , )

'( ) ( ( ) ( )) '( ( ) ( )

1 (1 ) 1 (1 )( )

p

p

qq p r r rr p
q pL a b

q L a b

b b b b

r r

        


 

− −− − − − −− −
−

 − −
 
 − − − −  

 

( )

 
1

(1 ) 1
1 1 (1 )

( , )

'( ) ( ( ) ( ))1

1 (1 )
p

q
r r p

q

q L a b

b C b

r

   




− − +
− − − −

 =
 − −    

 

 

Demak, 
1

p
p q

p
  

−
uchun 

       
( ) ( )

( ) ( ) ( )( )
( )

( )

1 1
1

1 1 1

;

( , ),

'1

1 1
pq

r r p q

L a bL b

b b a

r



 

 

  
 

 

− +
− − −

+

 −    
  − −
 

         bo‘ladi. 
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