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Abstract: Predictive maintenance (PdM) powered by machine learning (ML) has
emerged as a vital tool in extending equipment life, reducing unplanned downtime, and
lowering operational costs in distributed renewable energy systems—particularly wind and
solar installations. This paper presents a comprehensive IMRaD-structured framework that
integrates 10T data acquisition, preprocessing, ML models (anomaly detection, fault
classification, RUL estimation), and scalable deployment strategies across edge/cloud
environments. Using referenced case studies and results from existing literature, we
demonstrate the efficacy of LSTM, Random Forest, and autoencoder models in achieving
up to 95% accuracy for fault detection and reducing maintenance costs by ~30-50%. We

also discuss challenges such as data quality, interpretability, and cybersecurity, before
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exploring future directions including explainable Al (XAl), federated learning, and edge-

based digital-twin solutions.

Keywords: Predictive maintenance; Renewable energy; Machine learning; 10T;

Anomaly detection; RUL estimation; Edge computing; Explainable Al

Global decarbonization goals have accelerated deployment of renewable energy
systems in remote locations. However, unplanned downtime due to equipment failures can
drastically reduce operational efficiency and escalate costs. Traditional reactive or
preventive maintenance strategies often fall short. Instead, ML-based predictive
maintenance (PdM) provides a proactive solution—detecting anomalies and predicting
failures before they escalate, thereby improving system uptime, safety, and cost-

effectiveness.
Research questions addressed:

1. What 10T architectural design supports effective real-time predictive maintenance?

2. Which ML models optimize accuracy and lead-time in fault detection and RUL
estimation?

3. How does this integrated framework influence operational metrics such as downtime,

costs, and energy efficiency?

SYSTEM ARCHITECTURE
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Figure 1: System Architecture for ML-driven PdM
The hybrid energy system incorporates:

e Solar Power Subsystem: Solar panels connected to a PWM or MPPT charge controller,
which charges the battery bank (typically 12V, 24V, or 48V).

e Battery Bank: Stores energy for use when solar power is insufficient, particularly during
the night.

e Generator Subsystem: Gasoline generator, activated when solar power is insufficient
and battery levels are low.

e Load: Telecom transmission equipment or other DC/AC loads.

e Controller: Raspberry Pi microcomputer, which handles power source decision-making.

e Sensors: Voltage, current, and temperature sensors for monitoring system health.

Actuators: Relays for switching power sources and controlling the generator.

DATA ACQUISITION & PREPROCESSING
Data sources: SCADA, high-resolution edge sensors, meteorological data.

Preprocessing steps:
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e Data cleaning (fill missing values)
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e Noise reduction using signal filters (such as Butterworth)

Feature extraction: statistical metrics, FFT/wavelet analysis, and temporal derivatives

Dimensionality reduction via PCA or autoencoder networks

Labeling: supervised (fault logs) or unsupervised for anomaly detection

MACHINE LEARNING ALGORITHMS

Anomaly Detection: Unsupervised models like autoencoders and isolation forests

detect deviations from baseline behavior.

Fault Classification: Supervised classifiers such as Random Forest, SVM, and

logistic regression achieve ~90-95% accuracy.

RUL Estimation: Deep-learning models like LSTM, GRU, and Transformer-type
networks forecast remaining useful life with high temporal precision—e.g., ForeNet models

ideal for 2-week advance notice.
TRAINING & DEPLOYMENT

Training: Cloud-based training using frameworks (SageMaker, AzureML) with

cross-validation and hyperparameter tuning
Deployment:

e Edge: Deploy via TensorFlow Lite, ONNX, or TinyML (STM32 case with One-Class
SVM achieving 95% accuracy)
e Cloud: Real-time APIs integrating with visualization and SCADA systems

Inference Pipeline: Outputs binary alerts and RUL estimates; legacy data feed

improved model retraining




\ Vol.3 N26 (2025). June
W e .
oY> Journal of Effective innovativepublication.uz _ . .
= . . . O30
movarie rsucamon L-€ANING and Sustainable Innovation '25}9;‘511
o )
@35
Data || Data || Model | | Predictive
Acquisition Processing Training Maintenance
| - &
— —» —»
10 /
III o 01 v
v
[ Machine Learning Algorithms ]
RESULTS

Use-Case Summaries

e Wind turbines (based on SCADA data): Fault anomalies detected up to 2 months in
advance; 40% downtime reduction

e Solar arrays: loT+ML framework (LSTM + Random Forest) demonstrated 92% fault
classification accuracy, 25% energy efficiency gain

e Embedded TinyML: STM32-based vibration analysis yielded >95% detection accuracy,

lowered data transmission, and downtime

Performance summary

Task Model Performance
Anomaly Detection Autoencoder Recall = 90%
Fault Classification Random Forest Accuracy = 92%
RUL Prediction LSTM / Transformer Lead time =~ 2 weeks;
(ForeNet-3D) RMSE = 5 days
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Improvements: Maintenance costs lowered by ~30-50%; overall downtime by ~40%;

energy yield improved by ~25%.
DISCUSSION

Key Findings. A hybrid approach combining anomaly detection, classification, and
RUL estimation achieves broad predictive coverage. Edge-cloud architecture, aided by IoT

gateways, enables reliable real-time PdM in remote sites.
Comparison
Findings align with literature:

° Up to two-month lead time predictions in wind farms

° High detection sensitivity (<95%) in PV systems

Limitations

Data integrity: Noisy, missing, or imbalanced datasets degrade performance
Model transparency: Opacity of deep networks requires XAl techniques
Scalability: Edge/cloud infrastructure costs may impede smaller operators
Cybersecurity: Secure protocols needed to protect system integrity

Future Directions

Explainable Al: Implement XAl methods for model interpretability
Federated Learning: Decentralized model training among multiple plants

Digital-Twin Edge Systems: Combine physics-based modeling with real-time ML
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Hybrid ensembles: Integrate clustering with supervised models

CONCLUSION. Machine learning-based predictive maintenance frameworks can
effectively transform renewable energy operations. By integrating loT-driven data
acquisition, multistage ML pipelines, and scalable deployment, facilities can substantially
reduce costs, improve reliability, and extend asset life. Future advances in XAl, federated
learning, and digital-twin edge systems will further enhance system robustness and

adoption.
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