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Abstract: Predictive maintenance (PdM) powered by machine learning (ML) has 

emerged as a vital tool in extending equipment life, reducing unplanned downtime, and 

lowering operational costs in distributed renewable energy systems—particularly wind and 

solar installations. This paper presents a comprehensive IMRaD-structured framework that 

integrates IoT data acquisition, preprocessing, ML models (anomaly detection, fault 

classification, RUL estimation), and scalable deployment strategies across edge/cloud 

environments. Using referenced case studies and results from existing literature, we 

demonstrate the efficacy of LSTM, Random Forest, and autoencoder models in achieving 

up to 95% accuracy for fault detection and reducing maintenance costs by ≈30–50%. We 

also discuss challenges such as data quality, interpretability, and cybersecurity, before 
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exploring future directions including explainable AI (XAI), federated learning, and edge-

based digital-twin solutions. 

Keywords: Predictive maintenance; Renewable energy; Machine learning; IoT; 

Anomaly detection; RUL estimation; Edge computing; Explainable AI 

 

Global decarbonization goals have accelerated deployment of renewable energy 

systems in remote locations. However, unplanned downtime due to equipment failures can 

drastically reduce operational efficiency and escalate costs. Traditional reactive or 

preventive maintenance strategies often fall short. Instead, ML-based predictive 

maintenance (PdM) provides a proactive solution—detecting anomalies and predicting 

failures before they escalate, thereby improving system uptime, safety, and cost-

effectiveness. 

Research questions addressed: 

1. What IoT architectural design supports effective real-time predictive maintenance? 

2. Which ML models optimize accuracy and lead-time in fault detection and RUL 

estimation? 

3. How does this integrated framework influence operational metrics such as downtime, 

costs, and energy efficiency? 

SYSTEM ARCHITECTURE 
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Figure 1: System Architecture for ML-driven PdM 

The hybrid energy system incorporates: 

● Solar Power Subsystem: Solar panels connected to a PWM or MPPT charge controller, 

which charges the battery bank (typically 12V, 24V, or 48V). 

● Battery Bank: Stores energy for use when solar power is insufficient, particularly during 

the night. 

● Generator Subsystem: Gasoline generator, activated when solar power is insufficient 

and battery levels are low. 

● Load: Telecom transmission equipment or other DC/AC loads. 

● Controller: Raspberry Pi microcomputer, which handles power source decision-making. 

● Sensors: Voltage, current, and temperature sensors for monitoring system health. 

● Actuators: Relays for switching power sources and controlling the generator. 

DATA ACQUISITION & PREPROCESSING 

Data sources: SCADA, high-resolution edge sensors, meteorological data. 

Preprocessing steps: 
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● Data cleaning (fill missing values) 

● Noise reduction using signal filters (such as Butterworth) 

● Feature extraction: statistical metrics, FFT/wavelet analysis, and temporal derivatives 

● Dimensionality reduction via PCA or autoencoder networks 

● Labeling: supervised (fault logs) or unsupervised for anomaly detection 

MACHINE LEARNING ALGORITHMS 

Anomaly Detection: Unsupervised models like autoencoders and isolation forests 

detect deviations from baseline behavior. 

Fault Classification: Supervised classifiers such as Random Forest, SVM, and 

logistic regression achieve ≈90–95% accuracy. 

RUL Estimation: Deep-learning models like LSTM, GRU, and Transformer-type 

networks forecast remaining useful life with high temporal precision—e.g., ForeNet models 

ideal for 2-week advance notice. 

TRAINING & DEPLOYMENT 

Training: Cloud-based training using frameworks (SageMaker, AzureML) with 

cross-validation and hyperparameter tuning 

Deployment: 

● Edge: Deploy via TensorFlow Lite, ONNX, or TinyML (STM32 case with One-Class 

SVM achieving 95% accuracy) 

● Cloud: Real-time APIs integrating with visualization and SCADA systems 

Inference Pipeline: Outputs binary alerts and RUL estimates; legacy data feed 

improved model retraining 
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RESULTS 

Use-Case Summaries 

● Wind turbines (based on SCADA data): Fault anomalies detected up to 2 months in 

advance; 40% downtime reduction 

● Solar arrays: IoT+ML framework (LSTM + Random Forest) demonstrated 92% fault 

classification accuracy, 25% energy efficiency gain 

● Embedded TinyML: STM32-based vibration analysis yielded >95% detection accuracy, 

lowered data transmission, and downtime 

Performance summary 

Task Model Performance 

Anomaly Detection Autoencoder Recall ≈ 90% 

Fault Classification Random Forest Accuracy ≈ 92% 

RUL Prediction LSTM / Transformer 

(ForeNet-3D) 

Lead time ≈ 2 weeks; 

RMSE ≈ 5 days 
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Improvements: Maintenance costs lowered by ~30–50%; overall downtime by ~40%; 

energy yield improved by ~25%. 

DISCUSSION 

Key Findings. A hybrid approach combining anomaly detection, classification, and 

RUL estimation achieves broad predictive coverage. Edge-cloud architecture, aided by IoT 

gateways, enables reliable real-time PdM in remote sites. 

Comparison 

Findings align with literature: 

● Up to two-month lead time predictions in wind farms 

● High detection sensitivity (≈95%) in PV systems 

Limitations 

Data integrity: Noisy, missing, or imbalanced datasets degrade performance 

Model transparency: Opacity of deep networks requires XAI techniques 

Scalability: Edge/cloud infrastructure costs may impede smaller operators 

Cybersecurity: Secure protocols needed to protect system integrity 

Future Directions 

Explainable AI: Implement XAI methods for model interpretability 

Federated Learning: Decentralized model training among multiple plants 

Digital-Twin Edge Systems: Combine physics-based modeling with real-time ML 
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Hybrid ensembles: Integrate clustering with supervised models 

CONCLUSION. Machine learning-based predictive maintenance frameworks can 

effectively transform renewable energy operations. By integrating IoT-driven data 

acquisition, multistage ML pipelines, and scalable deployment, facilities can substantially 

reduce costs, improve reliability, and extend asset life. Future advances in XAI, federated 

learning, and digital-twin edge systems will further enhance system robustness and 

adoption. 
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