

Vol.3 №5 (2025). May

 Journal of Effective innovativepublication.uz

 Learning and Sustainable Innovation

1129

C# DASTURLASH TILIDA KO'P O'LCHOVLI VA

NOTEKIS MASSIVLAR BILAN ISHLASH

Islomova Tamanno Ikrom qizi

Fargʻona davlat universiteti talabasi

islomovatamanno4@gmail.com

Mirsaid Yusupov Abdulazizovich

mirsaidbeky@gmail.com

 Annotatsiya: Mazkur maqolada C# dasturlash tilida ko‗p o‗lchovli va notekis

(jagged) massivlar bilan ishlashning nazariy va amaliy jihatlari yoritilgan. Massivlarning

tuzilishi, ularning farqlari, afzalliklari va dasturlarda qo‗llanilishi tahlil qilingan.

Shuningdek, massivlar bilan ishlashda uchraydigan texnik muammolar va ularning

yechimlari haqida ham fikr yuritilgan. Maqola dasturlash asoslarini o‗rganayotgan talabalar

va dasturchilar uchun foydalidir.

 Kalit so‘zlar: C# dasturlash tili, ko‗p o‗lchovli massiv, notekis massiv, indekslash,

xotira tashkiloti, massivlar farqi.

Аннотация: В данной статье рассматриваются теоретические и практические

аспекты работы с многомерными и зубчатыми (jagged) массивами в языке

программирования C#. Проанализированы структура массивов, их различия,

преимущества и области применения в программировании. Также затронуты

технические сложности при работе с массивами и возможные способы их решения.

Статья будет полезна студентам и программистам, изучающим основы

программирования.

mailto:islomovatamanno4@gmail.com
mailto:mirsaidbeky@gmail.com

Vol.3 №5 (2025). May

 Journal of Effective innovativepublication.uz

 Learning and Sustainable Innovation

1130

 Ключевые слова: язык программирования C#, многомерный массив, зубчатый

массив, индексация, организация памяти, различие массивов

Abstract: This article explores the theoretical and practical aspects of working with

multidimensional and jagged arrays in the C# programming language. It analyzes the

structure of arrays, their differences, advantages, and application in real-world

programming scenarios. Technical issues encountered when dealing with arrays and their

solutions are also discussed. The article is beneficial for students and developers studying

programming fundamentals.

 Keywords: C# programming language, multidimensional array, jagged array,

indexing, memory organization, array differences.

Massivlar zamonaviy dasturlash tillarida muhim ma‘lumot tuzilmalari hisoblanadi.

Ular bir xil turdagi elementlardan tashkil topgan bo‗lib, dasturchiga katta hajmdagi

ma‘lumotlarni tartibli va qulay tarzda saqlash imkonini beradi. Ayniqsa, C# dasturlash tilida

massivlar orqali bir nechta o‗lchamli ma‘lumotlar bilan ishlash imkoniyati mavjud. Ushbu

maqolada aynan ko‗p o‗lchovli (multidimensional) va notekis (jagged) massivlar bilan

ishlash, ularning o‗ziga xos xususiyatlari, farqlari va amaliy dasturlarda qanday qo‗llanilishi

haqida batafsil fikr yuritiladi.

 Avvalo, ko‗p o‗lchovli massivlar haqida gapirilganda, bu ikki yoki undan ortiq

o‗lchovga ega bo‗lgan massivlar tushuniladi. Oddiy massivlar faqat bitta o‗lchovga ega

bo‗lsa (ya‘ni, ular bir qatordagi elementlar ketma-ketligidir), ko‗p o‗lchovli massivlar esa

ikki o‗lchovli (matrisa ko‗rinishidagi), uch o‗lchovli yoki undan ortiq bo‗lishi mumkin.

Ko‗p o‗lchovli massivlarning eng keng tarqalgan shakli ikki o‗lchovli massivdir, u odatda

satr va ustunlar orqali tasvirlanadi.

C# dasturlash tilida ikki o‗lchovli massiv quyidagicha e‘lon qilinadi:

Vol.3 №5 (2025). May

 Journal of Effective innovativepublication.uz

 Learning and Sustainable Innovation

1131

int[,] sonlar = new int[3, 4];

 Yuqoridagi misolda sonlar nomli massiv 3 ta satr va 4 ta ustundan iborat bo‗lib, jami

12 ta butun sonni o‗zida saqlashi mumkin. Ushbu massivlar kompyuter xotirasida satrma-

satr yoki ustunma-ustun shaklida joylashadi (C# tilida satrma-satr holatda), bu esa ularning

ish faoliyatiga ta‘sir qilishi mumkin.

 Ko‗p o‗lchovli massivlarning afzalligi shundaki, ular murakkab strukturalashtirilgan

ma‘lumotlar bilan ishlashda qulaylik yaratadi. Masalan, jadval ko‗rinishidagi ma‘lumotlarni

(talabalar baholari, sport musobaqalari natijalari, temperaturalar jadvali va h.k.) saqlashda

ikki o‗lchovli massivlar ideal yechim bo‗la oladi. Bunday massivlarda ma‘lumotlar satr va

ustun koordinatalari orqali aniqlanadi.

 Ko‗p o‗lchovli massivlardan foydalanishda indekslar yordamida kerakli elementga

murojaat qilinadi. Masalan, sonlar[2, 1] ifodasi uchinchi satr va ikkinchi ustundagi

elementga murojaat qiladi. Indekslar 0 dan boshlanishini eslatib o‗tish muhimdir.

 Ko‗p o‗lchovli massivlar C# dasturlash tilida ma‘lumotlarni tartibli saqlash va qayta

ishlashda muhim o‗rin tutadi. Ular turli sohalardagi dasturlarda, jumladan, ilmiy

hisoblashlar, grafik ilovalar, matritsa amallari va boshqa ko‗plab amaliyotlarda keng

qo‗llaniladi.

 Ko‗p o‗lchovli massivlardan tashqari, C# dasturlash tilida yana bir muhim ma‘lumot

tuzilmasi mavjud bo‗lib, bu notekis massivlar (inglizcha nomi: jagged arrays) deb ataladi.

Notekis massivlar o‗zining ichida boshqa massivlarni element sifatida saqlaydi. Ya‘ni, ular

birinchi bosqichda bir o‗lchamli massiv sifatida ko‗rinadi, biroq uning har bir elementi o‗z

navbatida boshqa bir o‗lchamli massiv bo‗lishi mumkin. Bu massivlarning asosiy xususiyati

shundaki, ichki massivlar har xil uzunlikda bo‗lishi mumkin, ya‘ni ular ―notekis‖ shaklga

ega bo‗ladi.

 Notekis massivlar quyidagicha e‘lon qilinadi:

int[][] baholar = new int[3][];

Vol.3 №5 (2025). May

 Journal of Effective innovativepublication.uz

 Learning and Sustainable Innovation

1132

baholar[0] = new int[2];

baholar[1] = new int[4];

baholar[2] = new int[3];

 Yuqoridagi misolda baholar nomli massiv 3 ta elementdan iborat bo‗lib, har bir

elementi turli uzunlikdagi ichki massivdir. Ya‘ni, birinchi satrda 2 ta, ikkinchisida 4 ta,

uchinchisida esa 3 ta element mavjud. Bu turdagi massivlar ayniqsa foydalidir, agar har bir

guruh yoki to‗plamning elementlar soni oldindan noma‘lum yoki har xil bo‗lsa. Misol

uchun, turli fanlardan har xil sonli test savollariga ega bo‗lgan talabalar javoblarini

saqlashda notekis massivlar ancha mos tushadi.

 Notekis massivlar va ko‗p o‗lchovli massivlar o‗rtasidagi asosiy farqlardan biri —

tuzilma soddaligi va moslashuvchanlik darajasidir. Ko‗p o‗lchovli massivlarda barcha

satrlar va ustunlar bir xil o‗lchamga ega bo‗lishi shart bo‗lsa, notekis massivlarda bu

cheklov mavjud emas. Bu esa ularni dinamik ma‘lumotlar bilan ishlashda yanada qulay

qiladi.

 Yana bir muhim farq — xotira boshqaruvida namoyon bo‗ladi. Ko‗p o‗lchovli

massivlar xotirada uzluksiz joy egallaydi, bu esa ishlash tezligiga ijobiy ta‘sir qilishi

mumkin, ayniqsa katta hajmdagi massivlar bilan ishlaganda. Aksincha, notekis massivlarda

har bir ichki massiv alohida xotira manzilida saqlanadi. Natijada, ular ko‗proq xotira

moslashuvchanligini taklif etadi, biroq ba‘zida ishlash tezligi biroz pasayishi mumkin.

 Notekis massivlarga murojaat qilishda ikki qadamli indekslashdan foydalaniladi.

Masalan, baholar[1][2] ifodasi ikkinchi massivning uchinchi elementini bildiradi. Bunda

har ikkala indeks ham 0 dan boshlanadi. Bu indekslash ko‗rinishi dasturchidan e‘tibor va

aniqlikni talab qiladi, chunki noto‗g‗ri indekslar ishlatilganda runtime xatolarga olib kelishi

mumkin.

 Yakuniy tarzda ta‘kidlash joizki, notekis massivlar real hayotdagi murakkab va

o‗zgaruvchan tuzilmalarga moslashish imkonini beruvchi kuchli vositadir. Ular C# tilining

Vol.3 №5 (2025). May

 Journal of Effective innovativepublication.uz

 Learning and Sustainable Innovation

1133

obyektga yo‗naltirilgan xususiyatlari bilan uyg‗un ishlaydi va dasturlash amaliyotida keng

qo‗llaniladi, ayniqsa foydalanuvchilardan turli uzunlikdagi ma‘lumotlarni qayta ishlash

talab etilgan hollarda.

 Dasturlashda ma‘lumotlar bilan samarali ishlash — dastur ishonchliligi va

unumdorligining asosiy omillaridan biridir. Shu nuqtai nazardan, massivlar, ayniqsa ko‗p

o‗lchovli va notekis massivlar, turli sohalardagi amaliy masalalarni hal etishda keng

qo‗llaniladi. Har ikki turdagi massivlar o‗ziga xos afzallik va cheklovlarga ega bo‗lib, ular

konkret masalaga qarab tanlanadi.

 Ko‗p o‗lchovli massivlar, ayniqsa, matematik va statistik hisoblashlarda muhim

rol o‗ynaydi. Masalan, ikkita matritsani ko‗paytirish, determinant topish, grafik tizimlarda

tasvirni piksel bo‗yicha tahlil qilish, issiqlik xaritalarini modellashtirish kabi jarayonlarda

ikki yoki undan ortiq o‗lchovli massivlar ishlatiladi. Chunki bu massivlar tartibli va

simmetrik tuzilishga ega, bu esa ularni matematik formulalar bilan uyg‗unlashtirishni

osonlashtiradi.

 Notekis massivlar esa foydalanuvchi ma’lumotlari turlicha bo‘lgan holatlarda

afzallik beradi. Masalan, onlayn test tizimlarida har bir talabaga turli sonli savollar to‗g‗ri

kelishi mumkin. Yoki biror IT kompaniyada xodimlar turli loyihalarda qatnashadi va har bir

xodimda har xil sonli topshiriqlar mavjud bo‗lishi mumkin. Bunday holatlarda bir xil

o‗lchamdagi massiv yetarli bo‗lmaydi. Shu sababli, notekis massivlar yordamida dinamik

ma’lumotlar tuzilmalari tashkil qilinadi.

Ustunliklariga to‗xtalsak, ko‗p o‗lchovli massivlar:

 Tizimli va tartibli ma‘lumotlar bilan ishlashda juda qulay;

 Xotirada uzluksiz saqlanadi, bu ishlash tezligini oshiradi;

 Ma‘lumotlar orasidagi munosabatlarni (satr-ustun orqali) aniqlashda yengillik

yaratadi.

Biroq ularning kamchiligi shundaki:

Vol.3 №5 (2025). May

 Journal of Effective innovativepublication.uz

 Learning and Sustainable Innovation

1134

 Har bir o‗lcham qat‘iy belgilanadi, bu esa moslashuvchanlikni kamaytiradi;

 Ortiqcha joy ajratilishi holatlari yuzaga kelishi mumkin.

Notekis massivlar esa:

 Turli uzunlikdagi ma‘lumotlar bilan ishlashda o‗zini oqlaydi;

 Har bir ichki massiv mustaqil tuzilishga ega bo‗lib, ehtiyojga ko‗ra shakllantiriladi;

 Dinamik ma‘lumotlar strukturasini yaratishga imkon beradi.

Shu bilan birga, notekis massivlarning ham ayrim cheklovlari mavjud:

 Har bir ichki massiv alohida xotira maydonida saqlanadi, bu esa xotira

fragmentatsiyasiga olib kelishi mumkin;

 Murakkab tuzilma tufayli, ularga ishlov berish, ayniqsa indekslash, murakkablik

tug‗diradi;

 Ma‘lumotlar ketma-ketligi yo‗qolgan holatlar yuzaga kelishi mumkin.

 Amaliyotda ko‗plab dasturchilar massiv tanlashda moslashuvchanlik va ishlash

tezligi o‘rtasidagi muvozanatni inobatga oladilar. Shu sababli, dastur tuzilmasi,

foydalanuvchi ehtiyoji va ma‘lumotlar tabiati asosida massiv turi tanlanadi. Masalan, mobil

ilovalar uchun yengil, tezkor ishlaydigan massivlar zarur bo‗lsa, server tomondagi tahliliy

hisob-kitoblarda massivlarning quvvati va strukturaviy imkoniyatlari muhim bo‗ladi.

 Zamonaviy dasturlashda murakkab ma‘lumotlar tuzilmalarini yaratish va boshqarish

muhim o‗rin tutadi. Ayniqsa, C# dasturlash tilida mavjud bo‗lgan imkoniyatlar orqali

massivlar bilan ishlash ancha qulay va samarali amalga oshiriladi. Shu jihatdan ko‗p

o‗lchovli va notekis massivlar dasturchiga har xil murakkablikdagi strukturalarni

modellashtirish imkonini beradi.

 Ko‗p o‗lchovli massivlar — aniq struktura va qat’iy o‘lchamlar asosida tuzilgan

massivlar hisoblanadi. Ular, asosan, matematik va vizual modellashtirishlarda, statistik

tahlil, raqamli signallarni qayta ishlash, fizik jarayonlarni kompyuter modellashtirish kabi

Vol.3 №5 (2025). May

 Journal of Effective innovativepublication.uz

 Learning and Sustainable Innovation

1135

sohalarda keng qo‗llaniladi. Bu massivlar tizimli va izchil tuzilishga ega bo‗lgani sababli,

algoritmik jihatdan ularni qayta ishlash nisbatan oson va aniqdir.

 Boshqa tomondan, notekis massivlar esa dasturiy yechimlarda moslashuvchanlik va

sharoitga qarab shakllanish imkonini taqdim etadi. Turli foydalanuvchi guruhlari uchun

moslashgan ma‘lumotlar, nomutanosib kiruvchi ma‘lumotlar oqimi yoki har xil uzunlikdagi

ro‗yxatlar bilan ishlaganda notekis massivlar eng maqbul tanlov bo‗lib xizmat qiladi. Aynan

shuning uchun ham ularning qo‗llanish doirasi keng bo‗lib, veb-ilovalar, foydalanuvchi

interfeyslari, test tizimlari va ma‘lumotlar bazasi bilan integratsiyalashgan modullarni

yaratishda keng ishlatiladi.

 Texnik nuqtai nazardan, har ikkala massiv turining o‗ziga xos tuzilmasi, xotira

tashkiloti va indekslash mexanizmlari mavjud. Ko‗p o‗lchovli massivlar xotirada ketma-ket,

bir butun blokda saqlansa, notekis massivlar har bir ichki elementni alohida massiv sifatida

ko‗radi va saqlaydi. Bu jihat ularning ishlash samaradorligiga bevosita ta‘sir ko‗rsatadi. Shu

bois, dasturchi har bir konkret holatda ishlash tezligi, xotira sarfi va tuzilma soddaligi

mezonlarini hisobga olgan holda tanlov qilishi zarur.

 Shuningdek, massivlar bilan ishlashda indeksdan foydalanishning to‘g‘riligini

tekshirish, xatoliklar bilan ishlash, dinamik ajratish va ma’lumotlarga murojaat

tezligi kabi texnik aspektlar e‘tibordan chetda qolmasligi lozim. Ayniqsa notekis

massivlarda noto‗g‗ri indekslash Index Out Of Range Exception xatosiga olib kelishi

mumkin.

 Yakunda aytish mumkinki, C# dasturlash tilida ko‗p o‗lchovli va notekis massivlar

orqali murakkab ma‘lumotlar tuzilmalari samarali ifodalanadi. Ularning o‗zaro farqlari,

imkoniyatlari va cheklovlarini chuqur o‗rganish — dasturchining muammoga to‗g‗ri

yondashuvi va optimal yechim tanlashi uchun zamin yaratadi. Shuningdek, bu bilimlar

dasturchilarni nafaqat texnik saviyaga olib chiqadi, balki ularni amaliyotga yo‗naltirilgan

tahliliy fikrlashga ham undaydi.

Vol.3 №5 (2025). May

 Journal of Effective innovativepublication.uz

 Learning and Sustainable Innovation

1136

Xulosa

 C# dasturlash tilida ko‗p o‗lchovli va notekis massivlar dasturchilar uchun kuchli va

moslashuvchan ma‘lumotlar tuzilmasi sifatida xizmat qiladi. Ushbu maqolada har ikki

massiv turi to‗g‗risidagi nazariy tushunchalar, ularning tuzilish mexanizmi, dasturiy

amaliyotdagi o‗rni hamda o‗zaro farqlari batafsil tahlil qilindi. Ko‗p o‗lchovli massivlar

ma‘lumotlarni qat‘iy o‗lcham va tuzilishga ega bo‗lgan holatlarda saqlash uchun

mo‗ljallangan bo‗lib, ayniqsa matritsalar, koordinatalar tizimi, grafik tasvirlar va matematik

modellar bilan ishlashda alohida o‗rin tutadi.

 Notekis massivlar esa, o‗z tabiatiga ko‗ra, ichki tuzilmalarning har xil uzunlikda

bo‗lishiga imkon beruvchi moslashuvchan struktura hisoblanadi. Bu massivlar

foydalanuvchi kiritgan ma‘lumotlar hajmi va turi oldindan noma‘lum yoki o‗zgaruvchan

bo‗lgan holatlarda eng maqbul yechim sanaladi. Xususan, test tizimlari, javoblar ro‗yxati,

dinamik jadval strukturalari va ko‗p darajali konfiguratsiyalarga ega bo‗lgan ilovalarda

notekis massivlardan foydalanish samarali natijalar beradi.

 Shuningdek, maqolada massivlarning texnik jihatlari, jumladan xotirada joylashuvi,

ishlash tezligi, indekslash mexanizmi, xatoliklar bilan ishlash muammolari ham yoritildi.

Dasturchi uchun har ikki massiv turining imkoniyatlarini chuqur tahlil qilish, konkret

vazifaga eng mos tuzilmani tanlash, dastur samaradorligi va ishonchliligini oshirishda

muhim ahamiyat kasb etadi. C# dasturlash tilining kuchli obyektga yo‗naltirilgan

xususiyatlari massivlar bilan ishlashni yanada qulaylashtiradi hamda murakkab strukturaviy

ma‘lumotlarni modellashtirish imkonini yaratadi.

 Ko‗p o‗lchovli va notekis massivlar C# dasturlash muhitining asosiy vositalaridan

biri bo‗lib, ular bilan samarali ishlash dasturchining nazariy bilimlari va amaliy

ko‗nikmalariga bevosita bog‗liq. Ushbu bilimlarni puxta egallash esa zamonaviy dasturiy

mahsulotlar yaratishda muvaffaqiyat kalitidir.

Vol.3 №5 (2025). May

 Journal of Effective innovativepublication.uz

 Learning and Sustainable Innovation

1137

Adabiyotlar ro‘yxati:

1. Шарипов, Ш. Ш. (2020). Algoritmlar va dasturlash asoslari. Toshkent: Fan va

texnologiya nashriyoti.

2. Насруллаев, Р. (2018). C# dasturlash tili asoslari. Toshkent: ―Iqtisodiyot‖

nashriyoti.

3. Бобоев, Б. (2021). Massivlar va ular bilan ishlashning amaliy jihatlari. TATU Ilmiy

jurnali, 2(1), 34–41.

4. Алимов, А. Р., Абдурахмонов, А. И. (2017). Informatika va axborot

texnologiyalari. Toshkent: Oliy ta‘lim nashriyoti.

5. Albahari, J., & Albahari, B. (2021). C# 10.0 in a Nutshell: The Definitive Reference.

O‘Reilly Media.

6. Troelsen, A., & Japikse, P. (2022). Pro C# 10 with .NET 6: Foundational Principles

and Practices in Programming. Apress.

7. Richter, J. (2012). CLR via C#. Microsoft Press.

8. Skeet, J. (2019). C# in Depth. Manning Publications.

9. Lippert, E. (2011). C# Programming Guide — Microsoft Docs.

https://learn.microsoft.com/en-us/dotnet/csharp/

https://learn.microsoft.com/en-us/dotnet/csharp/

