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В математической физике наиболее актуальны и важны постановки 

ретроспективных обратных задач для уравнений параболического типа – моделей, 

описывающих пространственно - временное распределение температуры и 

концентрации. Кроме того, основные методы исследования задач для таких 

постановок могут быть с успехом применены для более сложных связанных моделей,  
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например, для моделей термоупругости. Для представленной в настоящей работе 

модели, в основном опираются на постановки для операторов параболического типа, 

обращение временных зависимостей представляет наибольшую трудность. 

Обращение соответствующих операторных уравнений приводит к задаче обращения 

вполне непрерывных операторов, соответственно, к линейным некорректным 

задачам, требующим регуляризации. При этом наиболее часто используется метод 

регуляризации Тихонова [1, 2], метод усеченных сингулярных разложений [3] и 

предложенный относительно недавно Р. Латтесом и Ж.Л. Лионсом метод 

квазиобращения [4, 5].  

Рассмотрим следующую начально-краевую одномерную задачу для уравнения 

теплопроводности:  
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          Итак, поставим задачу о нахождении начального распределения температур 

( )x  по информации (4).  

          Для исследования обратной задачи построим соответствующие операторные 

уравнения, позволяющие связать заданные и искомые функции. Построим решение 

прямой задачи, используя метод разделения переменных и отыскивая  решение  в  

виде  ( , ) ( ) ( ).u x t X x T t   Разделяя переменные, получим  
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откуда выводим обыкновенное дифференциальное уравнение 
2'' 0X X   и 

определяем  общее  решение  в  виде 1 2cos sin .X C x C x     

Используя граничные условия, находим 2 10, sin 0C C x  и, следовательно, 

определяем собственные  значения  и  собственные  функции: 
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 Удовлетворяя начальным условиям, определим неизвестные постоянные nC : 

0 0
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         Таким образом, решение прямой задачи имеет вид 
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       Соотношение (6) позволяет определить поле температур в любой момент 

времени в произвольной точке стержня, если задано начальное распределение 

температуры. 
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      Перейдем к обратной задаче. На основании формул (5) – (6) обратная задача при 

удовлетворении дополнительного условия (4) сводится к интегральному уравнению 

Фредгольма  1-го рода 

1 1

0

( , ) ( ) ( ), [0, ],

l

K K x d f x x l                                   (7) 

причем 1( , ) ( , , ),K x K x T  . Отметим, что ядро 1( , )K x   является симметричным,  а  

оператор  1K   – самосопряженным  в 2[0, ]L l .  Собственные функции ядра – 1, 

cos nx  — представляют собой полную ортогональную систему  в 2[0, ]L l  а  

сингулярными  числами  оператора 1K  являются  
2
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сходимости ряда в правой части этого неравенства в соответствии с теоремой 

Вейерштрасса ядро, 1( , )K x   представляет собой непрерывную функцию, 

следовательно,  оператор 1( , )K x   является  вполне  непрерывным из 2[0, ]L l   в  

2[0, ]L l ,  поэтому  
1

1K 

 неограничен и задача решения операторного уравнения (7) 

требует регуляризации. Заметим, что, используя ортогональность системы  {1,cos }nx  

нетрудно выписать формальное решение (7) с помощью линейного оператора вида  

*

1

0

( ) ( , ) ( ) ,

l

K x f d                                       (8) 

поскольку коэффициенты Фурье k  и kf  функций соответственно связаны 

зависимостью 

2( ) , 0,1...n kx f k                                                          (9) 
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Анализируя представление (7)–(8), заметим, что для сходимости ряда в 

представлении для  ( )x  в силу наличия у его элементов быстро растущих  

множителей 
2
n aT

e


 необходимо  требовать выполнения довольно жестких условий для 

характера убывания коэффициентов Фурье kf . Это условие выполняется далеко не 

для всех функций из 2[0, ]L l  даже бесконечно дифференцируемых. Таким образом, 

нельзя использовать формальное решение (6) для практических расчетов, когда 

функция ( )f   задана в некотором конечном наборе точек. Такая структура решения 

отражает факт неограниченности обратного оператора 1( , )K x  . 

        По-видимому, одним из наиболее эффективных способов построения 

регуляризованного решения (2.2.5) является метод усеченных сингулярных   

разложений, согласно которому это решение имеет вид 

2
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а число N (параметр регуляризации в данном случае) выбирается согласованным  с  

погрешностью  δ  задания  функции f ( )f f  
.  Найдем, из каких условий оно 

определяется. Оценим погрешность в норме 2[0, ]L l :
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причем 
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 представляет  собой  норму  остатка  сходящегося ряда и, 

следовательно, стремится к 0 при N  . 
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Таким образом, погрешность регуляризованного решения оценивается через 

величину  ( , ) ( ) ( )m N M N C N     и по заданному δ всегда найдется N*δ 

доставляющее минимум ( , )m N  . Если необходимо построить решение обратной 

задачи с погрешностью, не превышающей, ε при условии, что погрешность  задания  

входных  данных, δ  то  порядок  величины  N  таков: 1 1 0.5ln( ), ( )N c c l aT





    

Отметим, что при определенных соотношениях между параметрами ε и δ может 

так случиться, что такого целого N не существует, соответственно, необходимой 

точности решения при заданной погрешности входных данных достигнуть 

невозможно.  
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