



## EXPERIMENTAL DETERMINATION LENGTH OF LIQUID FILM IN DUSTY GAS CLEANER

Nasimbek Ergashev

Fergana Polytechnic Institute

[n.ergashev@ferpi.uz](mailto:n.ergashev@ferpi.uz)

Ismoiljon Xalilov

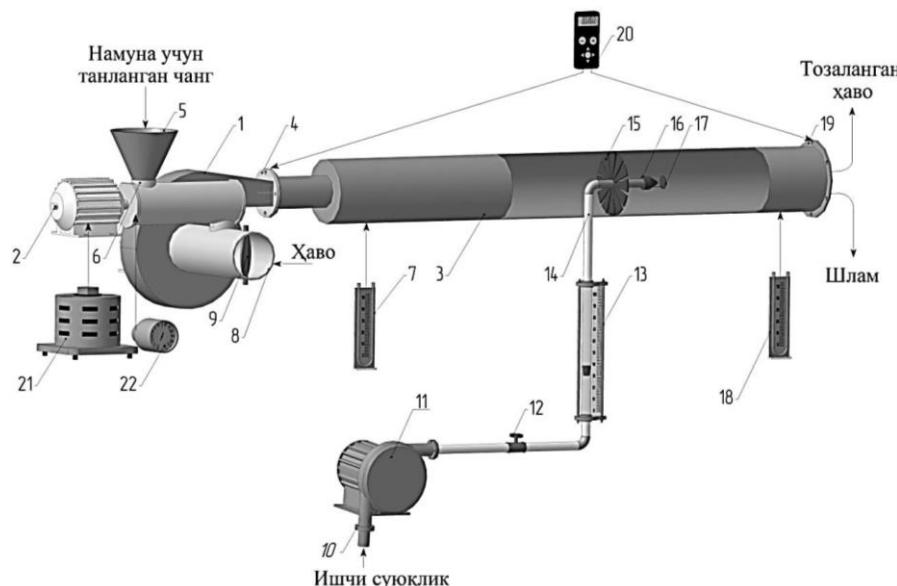
Fergana Polytechnic Institute

[i.l.xalilov@ferpi.uz](mailto:i.l.xalilov@ferpi.uz)

**Abstract:** This article is written about the technological equipment for the formation of an aqueous layer for cleaning gases and dusty air.

**Key words:** Gas, water, device, curtain forming, dusty air.

**Annotatsiya:** Ushbu maqola gazlarni va changli xavoni tozalash bo'yicha suvli qatlam xosil qilishga doir texnologik uskuna to'g'risida yozilgan.


**Kalit so'zlar:** Gaz, Suv, qurilma, parda xosil qilish, changli xavo.

**Аннотация:** В данной статье написано о технологическом оборудовании для формирования водного слоя для очистки газов и запыленного воздуха.

**Ключевые слова:** Газ, вода, приборы, завесы, запыленный воздух.



In the experimental model of the newly developed wet method dust collector and gas cleaning apparatus, the main working factors influencing the cleaning process were identified (Figure 1) [1]. The gas velocity in the apparatus, the length of the liquid film, and the working surface were determined experimentally by gas and liquid flow. A sharp contact element with a different slope was selected to allow the device to move. Based on the theoretical and experimental research, the initial requirements and specifications for the apparatus were developed.



**Figure 1. General view of wet dust collection and gas cleaning equipment.**

The following necessary equipment and devices were selected for the experimental model in determining the length of the liquid film by means of gas velocity, liquid and gas consumption, flow regime and hydraulic resistance coefficients in the wet method dust collection and gas cleaning apparatus.

S32412 nozzle (hole diameter 2; 2.5 and 3 mm nozzle according to GOST-384610), centrifugal pump (PEDRJLLA - Qmax) for spraying liquid into the working chamber of the device= 40 l / min; Nd<sub>v</sub> = 0.37 kW; N<sub>max</sub> = 38 m; V = 220 V; n<sub>ay</sub> = 3000 rpm (according to GOST-2757030-91), rotometer (PC-5; scale readings in the range 0 ÷ 100; according to GOST-1304581) was selected. The change in fluid and gas consumption was determined by



determining the length of the liquid film depending on the nozzle hole diameters and gas velocities. The experiments were performed in the following order.

In order to supply dusty gas to the working chamber of the apparatus Fan-VTs-14-07 centrifugal type fan; working productivity  $Q_{max} = 400 \text{ m}^3 / \text{hour}$ ; electromotive force  $N_{dv} = 1.5 \text{ kW}$ ; number of revolutions  $n = 1200 \text{ rpm}$ ; Pito Prandl tube 100 mm in size; According to Gosreestr №50123-12; The gas velocity detector consists of a metal tube with  $D = 100 \text{ mm}$ ,  $L = 1200 \text{ mm}$ . Prandl tubes with an internal diameter of 7 mm, which detect static and dynamic forces in the pipe, were selected as the experimental model, respectively. Gas velocities and, depending on the change in fluid and gas consumption supplied to the apparatus contact elements(zavixritel) depending on the change in slope angles and the length of the liquid film was determined by the coefficients of resistance. The experiments were performed in the following order. [2,3]

Gas velocities, depending on the change in fluid and gas consumption in the apparatus, the angle of inclination of the contact element blades(zavixritel)  $a = 30^\circ$  and nozzle hole diameter  $d_{sh} = 2$ ; Experiments were performed to determine the length of the liquid film formed in the working chamber at 2.5 and 3 mm. Fluid consumption according to the results of experiments and when the rotometer scale is  $0 \div 100$  the length of the liquid film formed in the working chamber of the apparatus at a gas velocity  $y_g = 7.07 \div 28.37 \text{ m} / \text{s}$   $30 \div$  It was found to be 275 mm. (Figure 1.2) In Table 1.1 contact element aThe values of the film length determined at  $a = 30^\circ$  and  $d_{sh} = 2 \text{ mm}$ ,  $2.5 \text{ mm}$ ,  $3 \text{ mm}$  are given.





## Learning and Sustainable Innovation

**Figure 1.2. View of the length of the liquid film formed in the working chamber of the apparatus. Table 1.1**

| Rsh | d <sub>sh</sub> = 2 mm |     |     |     |     | d <sub>sh</sub> = 2.5 mm |     |     |     |     | d <sub>sh</sub> = 3 mm |     |     |     |     |
|-----|------------------------|-----|-----|-----|-----|--------------------------|-----|-----|-----|-----|------------------------|-----|-----|-----|-----|
|     | 0o                     | 30o | 45o | 60o | 90o | 0o                       | 30o | 45o | 60o | 90o | 0o                     | 30o | 45o | 60o | 90o |
| 10  | 30                     | 40  | 130 | 160 | 170 | 30                       | 40  | 80  | 130 | 150 | 30                     | 40  | 90  | 150 | 170 |
| 20  | 55                     | 70  | 140 | 170 | 180 | 45                       | 55  | 95  | 145 | 165 | 45                     | 55  | 105 | 165 | 185 |
| 30  | 80                     | 95  | 150 | 180 | 190 | 60                       | 70  | 110 | 160 | 180 | 60                     | 70  | 120 | 180 | 200 |
| 40  | 100                    | 120 | 160 | 190 | 200 | 75                       | 85  | 125 | 175 | 195 | 75                     | 85  | 135 | 195 | 215 |
| 50  | 120                    | 145 | 170 | 200 | 210 | 90                       | 100 | 140 | 190 | 210 | 90                     | 100 | 150 | 210 | 230 |
| 60  | 140                    | 165 | 180 | 210 | 220 | 105                      | 115 | 155 | 205 | 225 | 105                    | 115 | 165 | 225 | 245 |
| 70  | -                      | -   | -   | -   | -   | 120                      | 130 | 170 | 220 | 240 | 120                    | 130 | 180 | 240 | 260 |
| 80  | -                      | -   | -   | -   | -   | -                        | -   | -   | -   | -   | 135                    | 145 | 195 | 255 | 275 |
| 90  | -                      | -   | -   | -   | -   | -                        | -   | -   | -   | -   | -                      | -   | -   | -   | -   |
| 100 | -                      | -   | -   | -   | -   | -                        | -   | -   | -   | -   | -                      | -   | -   | -   | -   |

The angle of inclination of the contact element blades (zavixritel)  $a = 45^\circ$  and nozzle hole diameter  $d_{sh} = 2$ ; Experiments were performed to determine the length of the liquid film formed in the working chamber at 2.5 and 3 mm. Fluid consumption according to the results of experiments and when the rotometer scale is 0  $\div$  100 the length of the liquid film formed in the working chamber of the apparatus at a gas velocity  $v_e = 7.07 \div 28.37$  m / s 80  $\div$  335 mm was found. In Table 1.2, the values of the film length determined at  $a = 45^\circ$  and  $d_{sh} = 2$  mm, 2.5 mm, 3 mm are given.

**Table 1.2**

| Rsh | d <sub>sh</sub> = 2 mm |     |     |     |     | d <sub>sh</sub> = 2.5 mm |     |     |     |     | d <sub>sh</sub> = 3 mm |     |     |     |     |
|-----|------------------------|-----|-----|-----|-----|--------------------------|-----|-----|-----|-----|------------------------|-----|-----|-----|-----|
|     | 0o                     | 30o | 45o | 60o | 90o | 0o                       | 30o | 45o | 60o | 90o | 0o                     | 30o | 45o | 60o | 90o |
| 10  | 80                     | 130 | 140 | 180 | 230 | 95                       | 135 | 155 | 200 | 270 | 100                    | 145 | 165 | 225 | 265 |



|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 20  | 90  | 140 | 150 | 190 | 240 | 100 | 140 | 165 | 210 | 280 | 105 | 150 | 175 | 235 | 275 |
| 30  | 100 | 150 | 160 | 200 | 250 | 105 | 145 | 175 | 220 | 290 | 110 | 155 | 185 | 245 | 285 |
| 40  | 110 | 160 | 170 | 210 | 260 | 110 | 150 | 185 | 230 | 300 | 115 | 160 | 195 | 255 | 295 |
| 50  | 120 | 170 | 180 | 220 | 270 | 115 | 155 | 195 | 240 | 310 | 120 | 165 | 205 | 265 | 305 |
| 60  | 130 | 180 | 190 | 230 | 280 | 120 | 160 | 205 | 250 | 320 | 125 | 170 | 215 | 275 | 315 |
| 70  | -   | -   | -   | -   | -   | 125 | 165 | 215 | 260 | 330 | 130 | 175 | 225 | 285 | 325 |
| 80  | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | 135 | 180 | 235 | 295 | 335 |
| 90  | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| 100 | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |

The angle of inclination of the contact element elements (zavixritel)  $\alpha = 60^\circ$  and nozzle hole diameter  $d_{sh} = 2$ ; Experiments were performed to determine the length of the liquid film formed in the working chamber at 2.5 and 3 mm. Fluid consumption according to the results of experiments and when the rotometer scale is 0  $\div$  100 the length of the liquid film formed in the working chamber of the apparatus at a gas velocity  $v_g = 7.07 \div 28.37$  m / s is 100  $\div$  Was found to be 265 mm contact element a. The values of the film length determined at  $\alpha = 60^\circ$  and  $d_{sh} = 2$  mm, 2.5 mm, 3 mm are given.

Table 3

| R <sub>sh</sub> | $d_{sh}= 2$ mm |     |     |     |     | $d_{sh}= 2.5$ mm |     |     |     |     | $d_{sh}= 3$ mm |     |     |     |     |
|-----------------|----------------|-----|-----|-----|-----|------------------|-----|-----|-----|-----|----------------|-----|-----|-----|-----|
|                 | 0o             | 30o | 45o | 60o | 90o | 0o               | 30o | 45o | 60o | 90o | 0o             | 30o | 45o | 60o | 90o |
| 10              | 100            | 130 | 135 | 145 | 150 | 105              | 140 | 150 | 165 | 170 | 110            | 170 | 175 | 185 | 195 |
| 20              | 110            | 140 | 145 | 155 | 160 | 115              | 150 | 160 | 175 | 180 | 120            | 180 | 185 | 195 | 205 |
| 30              | 120            | 150 | 155 | 165 | 170 | 125              | 160 | 170 | 185 | 190 | 130            | 190 | 195 | 205 | 215 |
| 40              | 130            | 160 | 165 | 175 | 180 | 135              | 170 | 180 | 195 | 200 | 140            | 200 | 205 | 215 | 225 |
| 50              | 140            | 170 | 175 | 185 | 190 | 145              | 120 | 190 | 205 | 210 | 150            | 210 | 215 | 225 | 235 |
| 60              | 150            | 180 | 190 | 195 | 200 | 155              | 190 | 200 | 215 | 220 | 160            | 220 | 225 | 235 | 245 |



|     |   |   |   |   |   |     |     |     |     |     |     |     |     |     |     |
|-----|---|---|---|---|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 70  | - | - | - | - | - | 165 | 200 | 210 | 225 | 230 | 170 | 230 | 235 | 245 | 255 |
| 80  | - | - | - | - | - | -   | -   | -   | -   | -   | 180 | 240 | 245 | 255 | 265 |
| 90  | - | - | - | - | - | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| 100 | - | - | - | - | - | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |

In experimental studies, the average growth of the liquid film is 10÷Showed an increase in the range of 15 mm.

Experiments on the determination of fluid and gas consumption, gas velocity and hydraulic resistance in the apparatus and the study of its effect on the cleaning efficiency show that the increase in the contact angle of the contact element acting on the gas flow in the apparatus ensured thickening of the liquid film layer. But it led to a decrease in the working surface. Conversely, a decrease in the reference angle led to an increase in the length of the liquid film and an increase in the working surface. Thus, high cleaning efficiency of dusty gas was achieved by increasing the length of the liquid film in the working chamber of the apparatus and increasing the working surface.

### References:

1. Ergashev N.A., Alimatov B.A., Karimov I.T. Wet dusting apparatus operating in twisted-pin satellite mode // Scientific and technical journal of Fergana Polytechnic Institute. - Fergana, 2019. - №2. - B. 147-152.
2. Ergashev N.A., Alimatov B.A., Axunbaev A.A. Energeticheskaya effektyvnost absorbtionnoy gazoochistki// Scientific and technical journal of Fergana Polytechnic Institute. - Fergana, 2017. - №4. - B. 140-143.
3. Arxipov V.A., Berezikov A.P. The basis of the theory of engineering-physical experiment. - Tomsk: Izd-vo Tomskogo politexnicheskogo Universiteta, 2008. - 206 p.
4. [Курилиш ойаси шихталарни аралаштирувчи қурилманинг асосий иш бажарувчи кураклари модернизацияси](#) ИТ Каримов, ИЛ Халилов, К М.