

1541

 Journal of Effective innovativepublication.uz

 Learning and Sustainable Innovation

MVP Arxitekturasining Android ilovalaridagi Afzalliklari va Kamchiliklari

Mahkamov Shohruh Sarvar o’g’li

Mirzo Ulug‘bek nomidagi O‘zbekiston milliy

universiteti Jizzax filiali Kompyuter ilmlari va

dasturlashtirish kafedra o’qituvchisi

mahkamov@jbnuu.uz

Jayabharath Reddy Dandu

Sambhram universiteti Jizzax filiali BSc fakulteti

BSc kafedra o'qituvchisi

Annotatsiya: Ushbu maqolada Android ilovalarini rivojlantirishda Model-View-

Presenter (MVP) arxitekturasi qo'llanishining afzalliklari va kamchiliklari tahlil qilinadi.

MVP arxitekturasi loyihaning kod bazasini yaxshi tashkil qilish, testlash osonligini

ta'minlash va kodning qayta foydalanish imkoniyatini oshirishga yordam beradi. Shu bilan

birga, bu arxitekturaning kamchiliklari ham mavjud bo'lib, ular orasida qo'shimcha kod

yozish zarurati va komplekslikni oshirishi mumkinligi kiradi. Maqolada ushbu afzalliklar va

kamchiliklar batafsil muhokama qilinadi va Android ilovalari uchun MVP arxitekturasi

qachon va qanday holatlarda eng yaxshi tanlov bo'lishi mumkinligi haqida tavsiyalar

beriladi.

Kalit so’zlar: MVP arxitekturasi, Android rivojlantirish, Model-View-Presenter,

Kodni testlash, Kodni qayta foydalanish, Android ilova arxitekturasi, Dasturiy ta'minot

arxitekturasi, Ilova dizayni, Kodni tashkil qilish, Arxitektura taqqoslash.

Vol.2 №5 (2024). May

mailto:mahkamov@jbnuu.uz

1542

 Journal of Effective innovativepublication.uz

 Learning and Sustainable Innovation

Abstract: This article examines the advantages and disadvantages of using the

Model-View-Presenter (MVP) architecture in Android application development. The MVP

architecture helps in organizing the codebase efficiently, facilitating easy testing, and

enhancing code reusability. However, it also has its drawbacks, including the necessity of

writing additional code and potential complexity increase. The article discusses these pros

and cons in detail and provides recommendations on when and how MVP architecture

might be the best choice for Android applications.

Key words: MVP architecture, Android development, Model-View-Presenter, Code

testing, Code reusability, Android application architecture, Software architecture,

Application design, Code organization, Architecture comparison

Аннотация: В данной статье рассматриваются преимущества и недостатки

использования архитектуры Model-View-Presenter (MVP) в разработке приложений

для Android. Архитектура MVP помогает эффективно организовать базу кода,

облегчает тестирование и повышает возможность повторного использования кода.

Однако она также имеет свои недостатки, включая необходимость написания

дополнительного кода и возможное увеличение сложности. В статье подробно

обсуждаются эти плюсы и минусы, а также даются рекомендации по поводу того,

когда и как архитектура MVP может быть наилучшим выбором для Android

приложений.

Ключевые слова: Архитектура MVP, Разработка Android, Model-View-

Presenter, Тестирование кода, Повторное использование кода, Архитектура Android

приложений, Программная архитектура, Дизайн приложений, Организация кода,

Сравнение архитектур.

Vol.2 №5 (2024). May

1543

 Journal of Effective innovativepublication.uz

 Learning and Sustainable Innovation

KIRISH

MVP yoki Model-View-Presenter - bu Android ilovalarini ishlab chiqishda keng

qo'llaniladigan arxitektura naqshidir. Bu eski Model-View-Controller (MVC) naqshining

evolyutsiyasi bo'lib, Android rivojlanishiga xos bo'lgan ba'zi muammolarni hal qilish uchun

mo'ljallangan.

MVP komponentlari:

Model - ilovaning ma'lumot va biznes mantiqini boshqaradi, ilovaning ma'lumotlari

va biznes mantiqini ifodalaydi va ma'lumotlarni qidirish, saqlash va manipulyatsiya qilish

kabi operatsiyalarni bajaradi.

Ko'rinish (View) - foydalanuvchi interfeysini taqdim etadi va uni yangilaydi,

ilovaning UI qatlamini ifodalaydi, foydalanuvchiga ma'lumotlarni ko'rsatadi va

foydalanuvchi ma'lumotlarini yozib oladi va foydalanuvchi ma'lumotlarini qayta ishlash

uchun taqdimotchiga yuboradi.

Taqdimotchi (Presenter) - Model va View o'rtasida vositachilik qiladi, ularning o'zaro

aloqa qilishini ta'minlaydi. Model va Ko'rinish o'rtasida vositachi sifatida ishlaydi. Biznes

mantig'ini boshqaradi va shunga mos ravishda Model va Ko'rinishni yangilaydi. Ko'rinishni

ma'lumotlar manbasidan mustaqil saqlaydi.

Bu usul kodni modullar shaklida ajratib qo'yishga va har bir modulni alohida test qilishga

imkon beradi.

Vol.2 №5 (2024). May

1544

 Journal of Effective innovativepublication.uz

 Learning and Sustainable Innovation

1-rasm: MVP (Model — View- Presenter) arxitektura patterni

MVP arxitekturasi kodni oson boshqarish, tahlil qilish va qo'llab-quvvatlash imkonini

beradi, bu esa dasturchilarga yanada samarali va ishonchli ilovalar yaratishga yordam

beradi. Shu bilan birga, bu arxitektura ba'zi kamchiliklarga ham ega bo'lib, qo'shimcha kod

yozishni talab qilishi va ba'zi holatlarda komplekslikni oshirishi mumkin.

MUHOKAMA

Xavotirlarni ajratish - MVP mas'uliyatni aniq ajratishda yordam beradi. Model

ma'lumotlar va biznes mantig'i uchun javobgardir, View ma'lumotlarni ko'rsatish uchun

javobgardir va Taqdimotchi ular orasidagi aloqani boshqaradi.

Sinovga yaroqliligi - MVP ilovangiz komponentlarini birlik sinovini osonlashtiradi.

Biznes mantig'i Taqdimotchiga ajratilganligi sababli, siz uni Android ramka

komponentlarini jalb qilmasdan sinab ko'rishingiz mumkin, bu test jarayonini

soddalashtiradi.

Presenter -
Taqdimotchi

(Intermediate)

View - Ko'rinish
(XML/Activity/

Fragment)

Model - Model
(Data state+

Business logic)

Foydalanuvchi
harakatini

xabardor qilish

Saqlash va so'rov
haqida xabar
beradi

UI ni
yangilash

So'rovni qayta
ishlash

Vol.2 №5 (2024). May

1545

 Journal of Effective innovativepublication.uz

 Learning and Sustainable Innovation

Xizmat ko'rsatish qobiliyati - Xavotirlarni aniq ajratish bilan kod bazasini saqlash va

kengaytirish osonroq bo'ladi. Bitta komponentdagi o'zgarishlar (masalan, UI qayta dizayni)

boshqalarga ta'sir qilishi shart emas.

Moslashuvchanlik - MVP ko'proq moslashuvchanlik va moslashish imkonini beradi.

Masalan, siz biznes mantig'ini (Taqdimotchi) yoki asosiy ma'lumotlarni (Model)

o'zgartirmasdan, foydalanuvchi interfeysini amalga oshirishni (Ko'rish) osongina

o'zgartirishingiz mumkin.

Oson hamkorlik - MVP ishlab chiquvchilar va dizaynerlar o'rtasidagi hamkorlikni

osonlashtiradi. Dizaynerlar UI ustida ishlayotgan paytda ishlab chiquvchilar biznes

mantig'iga e'tibor qaratishlari mumkin va bir sohadagi o'zgarishlar boshqasiga kamroq ta'sir

qiladi.

MVP qanday ishlaydi:

Foydalanuvchi kiritish - Foydalanuvchi kiritgan ma'lumotlar View (Faoliyat,

Fragment va h.k.) tomonidan yozib olinadi.

Taqdimotchi bildirishnomalarni ko‘rishi - Ko'rinish taqdimotchini foydalanuvchining

harakatlari haqida xabardor qiladi.

Taqdimotchi biznes mantiqiy jarayonlari - Taqdimotchi Model yordamida biznes

mantiqini qayta ishlaydi va shunga mos ravishda Modelni yangilaydi.

Model taqdimotchiga xabar beradi - Model taqdimotchiga ma'lumotlardagi

o'zgarishlar haqida xabar beradi.

Taqdimotchi yangilanishlari koʻrinishi - Taqdimotchi ko'rinishni yangi ma'lumotlar

bilan yangilaydi.

Vol.2 №5 (2024). May

1546

 Journal of Effective innovativepublication.uz

 Learning and Sustainable Innovation

Ushbu tsikl foydalanuvchilar ilova bilan o'zaro aloqada bo'lib, tashvishlarni aniq

ajratishni ta'minlab, kodlar bazasini yanada modulli va texnik xizmat ko'rsatishni

ta'minlaydi.

MVP afzalliklari:

Xavotirlarni ajratish - Biznes mantig'ini (Taqdimotchi) UI (Ko'rish) va ma'lumotlarni

qayta ishlash (Model) dan aniq ajratish.

Sinovga yaroqliligi - Biznes mantig'i Android ramka komponentlaridan ajratilganligi

sababli birlik sinovini o'tkazish osonroq.

Xizmat ko'rsatish qobiliyati - Bitta komponentdagi o'zgarishlar (masalan, UI qayta

dizayni) boshqalarga ta'sir qilishi shart emas, bu esa texnik xizmat ko'rsatishni

osonlashtiradi.

MVP ning kamchiliklari:

Murakkablik va qozon plastinkasi - MVP ko'pincha katta miqdordagi qozon kodini

talab qiladi. Har bir ko'rinish mos keladigan taqdimotchini talab qiladi, bu interfeyslar va

sinflarning ko'payishiga olib keladi. Bu murakkablik kodlar bazasini saqlashni

qiyinlashtirishi mumkin, ayniqsa yirik loyihalar uchun.

MVVM ning yuksalishi (Model-View-ViewModel) - MVVM, ayniqsa Google

ma'qullashi va LiveData va ViewModel kabi Android arxitektura komponentlarini joriy

etishi bilan katta qiziqish uyg'otdi. MVVM hayot aylanishidan xabardor ma'lumotlar bilan

ishlashni yaxshiroq qo'llab-quvvatlashni taklif qiladi, xotiraning oqishi xavfini kamaytiradi

va kodni boshqarishni osonlashtiradi.

Hayotiy tsiklni boshqarish - MVP tabiatan Android hayotiy tsikli voqealarini

boshqarmaydi va uni boshqarishni ishlab chiquvchiga topshiradi. Bu murakkab hayot

Vol.2 №5 (2024). May

1547

 Journal of Effective innovativepublication.uz

 Learning and Sustainable Innovation

aylanishini boshqarish kodiga olib kelishi mumkin. Bundan farqli o'laroq, MVVM kabi

arxitektura hayot aylanishidan xabardor komponentlar bilan buni ancha osonlashtiradi.

Ma'lumotlarni ulash - Android-da ma'lumotlarni bog'lashning joriy etilishi MVVM-ni

yanada jozibador qildi. Ma'lumotlarni ulash interfeysni yangilashda standart kodga bo'lgan

ehtiyojni kamaytiradi, chunki UI komponentlari ma'lumotlar o'zgarishlarini kuzatishi va

avtomatik ravishda yangilanishi mumkin.

Sinovga yaroqlilik va masshtablilik muammolari - MVP sinovdan o'tishni targ'ib

qilsa-da, Ko'rishlar va Taqdimotchilar o'rtasidagi mahkam bog'liqlik ba'zan sinovni

qiyinlashtirishi mumkin. MVVM o'zining ko'proq ajratilgan tabiati bilan ba'zi stsenariylarda

yaxshiroq sinovdan o'tishni taklif qilishi mumkin.

Hamjamiyat va yordam - Google va Android hamjamiyati asosan MVVM va MVI

(Model-View-Intent) kabi boshqa modellarga o'tish bilan birga, ushbu yangi arxitekturalar

uchun ko'proq hamjamiyat yordami, resurslari va asboblari mavjud. Bu yangi ishlab

chiquvchilar uchun ularni qabul qilishni osonlashtiradi.

O'rganish egri chizig'i - Yangi ishlab chiquvchilar uchun MVPni o'rganish MVVM

bilan solishtirganda qiyinroq bo'lishi mumkin, ayniqsa MVVM uchun mavjud bo'lgan

resurslar va jamoat misollari boyligi bilan.

NATIJALAR

MVP arxitekturasidan foydalanadigan holda bir kichik oddiy Android ilovasini

yaratish jarayonini ko’rib chiqsak.

Vol.2 №5 (2024). May

1548

 Journal of Effective innovativepublication.uz

 Learning and Sustainable Innovation

1-qadam: Model yaratish (Create Model)

public class MvpModel {

 public String getModeling() {

 return "Salom, MVPga Hush kelibsiz";

 }

}

 2-qadam: Ko'rish interfeysini yaratish (Create View Interface)

public interface ModelingView {

 void displayModeling(String modeling);

}

3-qadam: Taqdimotchi yaratish (Create Presenter)

public class ModelingPresenter {

 private final ModelingView view;

 private final ModelingModel model;

 public ModelingPresenter(ModelingView view, ModelingModel model) {

 this.view = view;

 this.model = model;

 }

 public void loadModeling() {

 String Modeling = model.getModeling();

 view.displayModeling(modeling);

 }

}

4-qadam: Ko‘rinishni amalga oshirish (Implement View) (Activity/Fragment)

Vol.2 №5 (2024). May

1549

 Journal of Effective innovativepublication.uz

 Learning and Sustainable Innovation

public class ModelingActivity extends AppCompatActivity implements ModelingView {

 private ModelingPresenter presenter;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_modeling);

 ModelingModel model = new ModelingModel();

 presenter = new ModelingPresenter(this, model);

 // Trigger the loading of the greeting

 presenter.loadModeling();

 }

 @Override

 public void displayGreeting(String modeling) {

 // Update UI with the greeting

 TextView modelingTextView = findViewById(R.id.modelingTextView);

 modelingTextView.setText(modeling);

 }

}

Ushbu misolda:

ModelingModel - ma’lumotlarni ifodalaydi.

ModelingView (ModelingActivity) - tomonidan amalga oshirilgan interfeysdir.

ModelingPresenter - vositachi vazifasini bajaradi va modeldagi ma'lumotlar bilan

ko'rinishni yangilaydi.

Vol.2 №5 (2024). May

1550

 Journal of Effective innovativepublication.uz

 Learning and Sustainable Innovation

MVP - bu Android ilovalari uchun mustahkam arxitektura, ayniqsa o'rta va yirik

loyihalar uchun foydalidir. Uning asosiy kuchi biznes mantig'ini UIdan ajratishda, ilovani

yanada barqaror va sinovdan o'tkazishdadir. Biroq, qo'shimcha murakkablikdagi kichik

loyihalar uchun mos kelmasligi mumkin.

XULOSA

Xulosa qilib aytganda MVP arxitekturasi Android ilovalarini ishlab chiqishda ko'plab

afzalliklarga ega bo'lsada, ba'zi kamchiliklarni ham e'tiborsiz qoldirib bo'lmaydi.

MVP arxitekturasi Android ilovalarini rivojlantirishda kuchli vosita bo'lib, kodni

boshqarish, testlash va qayta foydalanish imkoniyatlarini oshiradi. Shu bilan birga, bu

arxitekturaning qo'shimcha kod yozishni talab qilishi va ba'zi holatlarda murakkablikni

oshirishi mumkinligini ham hisobga olish lozim. Katta loyihalar uchun MVP arxitekturasi

juda mos keladi, kichik loyihalarda esa bu arxitekturaning barcha afzalliklaridan

foydalanish ehtiyoji bo'lmasligi mumkin.

Foydalanilgan adabiyotlar:

1. Махкамов, Ш. (2023). Теоретические основы базы данных (мб) и системы

управления базами данных (мббт). Информатика и инженерные технологии, 1(1),

90-94.

2. Аликулов, С. Т., & Махкамов, Ш.С. (2018). Дидактическая компетентность

педагога. In Развитие интеллектуально-творческого потенциала молодежи: из

прошлого в современность (pp. 150-152).

3. Toxir, A., & Lobar, A. (2023). Mobil ilovalar orqali yosh bolalarda uchraydigan nutq

buzilishlаrini bartaraf etish. In Uz-Conferences (Vol. 1, No. 1, pp. 906-911).

4. Toxir Turg'un o'gli, A. (2023). o‘rinlarni almashtirish usullari. In Uz-Conferences (Vol.

1, No. 1, pp. 133-138).

Vol.2 №5 (2024). May

1551

 Journal of Effective innovativepublication.uz

 Learning and Sustainable Innovation

5. Norqo’ziyev , Q. (2023). Mobil robotlar uchun yo’lni rejalashtirish algoritmi. Research

and Implementation. извлечено от https://fer-teach.uz/index.php/rai/article/view/746

6. Тоджиев, А., & Норкузиев, К. (2023). The role of artificial intelligence technology in

individualized teaching . Информатика и инженерные технологии, 1(2), 153–156.

извлечено от https://inlibrary.uz/index.php/computer-engineering/article/view/25014

7. Абдумаликов А. А. и др. Модель и алгоритмы процесса устройств контроля и

мониторинга управления энергоснабжением //Journal of innovations in scientific and

educational research. – 2023. – Т. 6. – №. 2. – С. 120-129.

Vol.2 №5 (2024). May

https://fer-teach.uz/index.php/rai/article/view/746
https://inlibrary.uz/index.php/computer-engineering/article/view/25014

